NC7WZ02 TinyLogic[™] UHS Dual 2-Input NOR Gate

General Description

Features

- Space saving US8 surface mount package
- Ultra High Speed: t_{PD} 2.4 ns typ into 50 pF at 5V V_{CC}
- High Output Drive: ±24 mA at 3V V_{CC}
- Broad V_{CC} Operating Range: 1.65V–5.5V
- Matches the performance of LCX when operated at $3.3V V_{CC}$
- Power down high impedance inputs/output
- Overvoltage tolerant inputs facilitate 5V to 3V translation
- Patented noise/EMI reduction circuitry implemented

Ordering Code:

				April 200 Revised	0 February 2002		
	202						
TinyLo	gic™ l	UHS C	Dual 2-Inp	out NOR Gate			
Ultra High Spe ated with adv igh speed wi tatic power d ange. The dev 5.5V V _{CC} rang	e is a dual 2- ed Series of vanced CM0 th high outp issipation ov vice is specif e. The inputs V. Inputs tole	Input NOR (TinyLogic™ OS technolo out drive wh ver a very b ied to opera s and output erate voltage	Sate from Fairchild The device is fabr gy to achieve ultr ille maintaining lo road V_{CC} operatin te over the 1.65V t are high impedanc s up to 7V indeper	 Features Space saving US8 surface mount package Ultra High Speed: t_{PD} 2.4 ns typ into 50 pF at 5V V_{CC} High Output Drive: ±24 mA at 3V V_{CC} Broad V_{CC} Operating Range: 1.65V–5.5V Matches the performance of LCX when operated at 3.3V V_{CC} Power down high impedance inputs/output Overvoltage tolerant inputs facilitate 5V to 3V translation Patented noise/EMI reduction circuitry implemented 			
Ordering	Code:	Draduat	Γ				
Order	Package	Product Code		Package Description	Supplied As		
Number	Number	Top Mark					
C7WZ02K8X	MAB08A	WZ02	8-Lead US8, JED	EC MO-187, Variation CA 3.1mm Wide 3k U	nits on Tape and Reel		
_ogic Sy	mbol			Connection Diagrams			
Pin Desc	A1	EE/IEC	∑_Y ₁	A1 11 B1 21 Y2 3 GND 4	18 V _{CC} 17 Y ₁ 16 θ ₂ 15 A ₂		
P	in Names	De	scription				
	A _n , B _n		Inputs	(Top View)			
	Y _n	(Dutput	Pin One Orientation Diagram			
Function							
	Y Inputs	= A + B	Output				
	A	В	Y	Pin One			
	L	L	Н	AAA represents Product Code Top Mark - see orde	ring code		
	L	Н	L	Note: Orientation of Top Mark determines Pin One	e location. Read the top		
	H	L	L	product code mark left to right, Pin One is the lowe	r left pin (see diagram).		
	H	Н	L				
I = HIGH Logic Le	vel						
= LOW Logic Lev	/el						

© 2002 Fairchild Semiconductor Corporation DS500269 www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

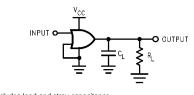
Supply Voltage (V _{CC})	-0.5V to +7V
DC Input Voltage (V _{IN})	-0.5V to +7V
DC Output Voltage (V _{OUT})	-0.5V to +7V
DC Input Diode Current (IIK)	
@ V _{IN} < -0.5V	–50 mA
DC Output Diode Current (I _{OK})	
@ V _{OUT} < -0.5V	–50 mA
DC Output Current (I _{OUT})	\pm 50 mA
DC V _{CC} /GND Current (I _{CC} /I _{GND})	\pm 100 mA
Storage Temperature (T _{STG})	$-65^\circ C$ to $+150^\circ C$
Junction Temperature under Bias (T_J)	150°C
Junction Lead Temperature (TL);	
(Soldering, 10 seconds)	260°C
Power Dissipation (P _D) @ +85°C	250 mW

Recommended Operating Conditions (Note 2)

Supply Voltage Operating (V_{CC})	1.65V to 5.5V
Supply Voltage Data Retention (V_{CC})	1.5V to 5.5V
Input Voltage (V _{IN})	0V to 5.5V
Output Voltage (V _{OUT})	0V to V _{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Input Rise and Fall Time (t_r, t_f)	
V_{CC} @ 1.8V \pm 0.15V, 2.5V \pm 0.2V	0 ns/V to 20 ns/V
$V_{CC} @ 3.3V \pm 0.3V$	0 ns/V to 10 ns/V
$V_{CC} @ 5.0V \pm 0.5V$	0 ns to 5 ns/V
Thermal Resistance (θ_{JA})	250°C/W

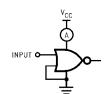
Note 1: Absolute maximum ratings are DC values beyond which the device may be damaged or have its useful life impaired. The datasheet specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside datasheet specifications.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

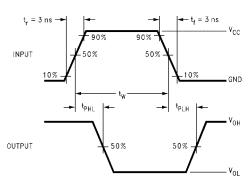

DC Electrical Characteristics

Symbol	Parameter	V _{CC}		T _A = +25°C			$T_A=-40^\circ C$ to $+85^\circ C$		Conditions		
Symbol	Farameter	(V)	Min	Тур	Max	Min	Max	Units	Conditions		
VIH	HIGH Level Input Voltage	1.65-1.95	0.75 V _{CC}			0.75 V _{CC}		V			
		2.3-5.5	0.7 V _{CC}			0.7 V _{CC}		v			
V _{IL}	LOW Level Input Voltage	1.65-1.95			0.25 V _{CC}		0.25 V _{CC}	V			
		2.3-5.5			0.3 V _{CC}		0.3 V _{CC}	v			
V _{ОН}	HIGH Level Output Voltage	1.65	1.55	1.65		1.55					
		2.3	2.2	2.3		2.2		V	$V_{IN} = V_{II}$	I _{OH} = -100μA	
		3.0	2.9	3.0		2.9		v	VIN = VIL	$I_{OH} = -100 \mu A$	
		4.5	4.4	4.5		4.4					
		1.65	1.29	1.52		1.29				$I_{OH} = -4 \text{ mA}$	
		2.3	1.9	2.15		1.9				$I_{OH} = -8 \text{ mA}$	
		3.0	2.4	2.80		2.4		V		$I_{OH} = -16 \text{ mA}$	
		3.0	2.3	2.68		2.3				I _{OH} = -24 mA	
		4.5	3.8	4.20		3.8				$I_{OH} = -32 \text{ mA}$	
V _{OL}	LOW Level Output Voltage	1.65		0.0	0.1		0.1				
		2.3		0.0	0.1		0.1	V	V _{IN} = V _{IH}	I _{OL} = 100μA	
		3.0		0.0	0.1		0.1	v	VIN- VIH	10L - 100µA	
		4.5		0.0	0.1		0.1				
		1.65		0.08	0.24		0.24	0.24		$I_{OL} = 4 \text{ mA}$	
		2.3		0.10	0.3		0.3			$I_{OL} = 8 \text{ mA}$	
		3.0		0.15	0.4		0.4	V		$I_{OL} = 16 \text{ mA}$	
		3.0		0.22	0.55		0.55			$I_{OL} = 24 \text{ mA}$	
		4.5		0.22	0.55		0.55			$I_{OL} = 32 \text{ mA}$	
I _{IN}	Input Leakage Current	0-5.5			±0.1		±1.0	μΑ	$V_{IN} = 5.5V$, GND	
I _{OFF}	Power Off Leakage Current	0.0			1		10	μΑ	V _{IN} or V _{OU}	JT = 5.5V = _{TL}	
I _{CC}	Quiescent Supply Current	1.65-5.5			1		10	μΑ	V _{IN} = 5.5V	, GND	

Symbol	Parameter	V _{cc}	$T_A = +25^{\circ}C$			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions	Fig. No.
		(V)	Min	Тур	Max	Min	Max	Units	conditions	Fig. No.
t _{PLH} ,	Propagation Delay	1.8 ± 0.15	2.0	5.4	9.8	2.0	10			
t _{PHL}		2.5 ± 0.2	1.2	3.3	5.4	1.2	5.8	ns	C _L = 15 pF,	Figures
		3.3 ± 0.3	0.8	2.5	3.8	0.8	4.1	115	$R_L = 1 M\Omega$	1, 3
		5.0 ± 0.5 0.5	2.0	3.0	0.5	3.3				
t _{PLH,}	Propagation Delay	3.3 ± 0.3	1.2	3.1	4.6	1.2	5.0		C _L = 50 pF,	Figures 1, 3
t _{PHL}		5.0 ± 0.5	0.8	2.4	3.7	0.8	4.0	ns	$R_L = 500\Omega$	
CIN	Input Capacitance	0		2.5				pF		
C _{PD}	Power Dissipation	3.3		13.5				~F	(Nata 2)	Figure C
	Capacitance	5.0		17.5				pF	(Note 3)	Figure 2

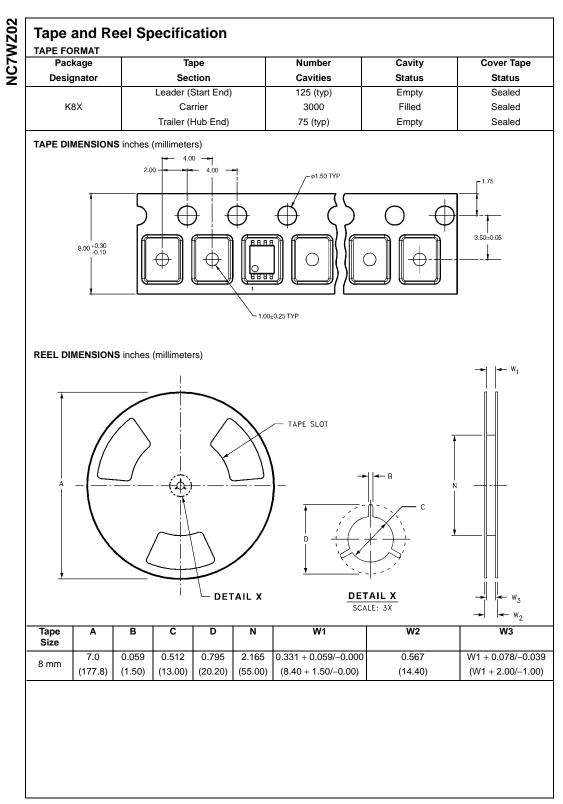

Note 3: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression: I_{CCD} = (C_{PD})(V_{CC})(f_{IN}) + (I_{CC}static).

AC Loading and Waveforms

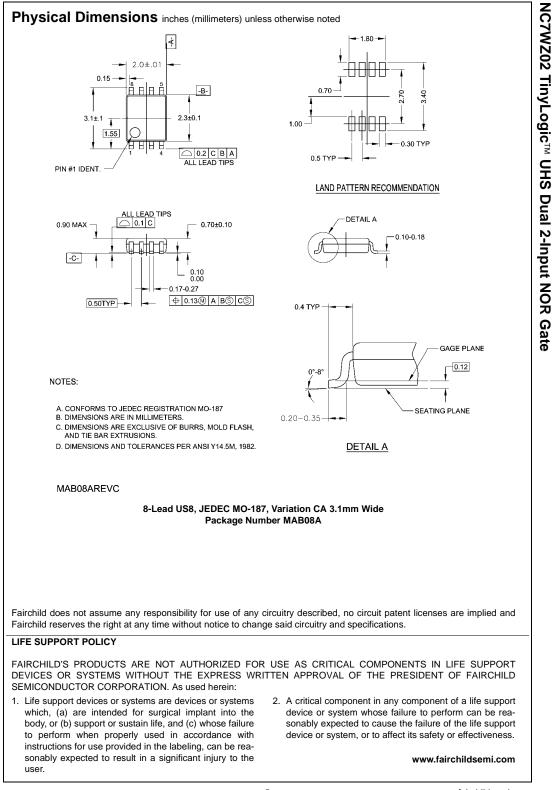


 C_{L} includes load and stray capacitance Input PRR = 1.0 MHz; t_{W} = 500 ns

FIGURE 1. AC Test Circuit



Input = AC Waveform; t_r = t_f = 1.8 ns; PRR = 10 MHz; Duty Cycle = 50% $FIGURE \ 2. \ I_{CCD} \ Test \ Circuit$


FIGURE 3. AC Waveforms

www.fairchildsemi.com

www.fairchildsemi.com

4

www.fairchildsemi.com